ماژول شتاب‌سنج Gebra IIM-42351

$4,08

نوع ماژول

شتاب‌سنج

ولتاژ تغذیه

1V8, 3V3

تعداد محور

3

نوع خروجی

I2C, I3C, SPI, Digital

FSR

±2, ±4, ±8, ±16(g)

رزولوشن ADC

16 Bit

جریان مصرفی

10 mA to 30 mA (Typ. 20 mA)

حساسیت شتاب‌سنج

16384, 2048 (LSB/g), 4096, 8192

ابعاد

Gebra small(36.29mm x 32.72mm)

دمای کاری

-40°C to 105°C

شتاب‌سنج IIM42351

IIM42351 یک شتاب سنج 3 محوره در پکیج 14 پین LGA می باشد.سنسور شتاب‌سنج IIM42351  همچنین دارای 2 کیلو بایت FIFO بوده که می تواند ترافیک گذرگاه سریال و توان مصرفی را با اجازه دادن به پردازنده برای خواندن پشت سر هم  اطلاعات سنسور و سپس رفتن به حالت کم مصرف، کاهش دهد .سنسور IIM42351 با 3 محور یکپارچه سازی شده، به طراحان کمک می کند تا با بهره‌گیری از این سنسور،فضای مورد نیاز برای طراحی و هزینه صرف شده برای انتخاب قطعات را کاهش دهند. شتاب‌سنج IIM42351 دارای  full-scale range  قابل برنامه ریزی از چهار رنج قابل تنظیم ±2g تا ±16g پشتیبانی می کند. از سایر ویژگی های پیشرو در این سنسور می توان به 16 بیت ADC داخلی، فیلترهای دیجیتال قابل برنامه ریزی،سنسور دمای داخلی و پروتکل های ارتباطی دیجیتالI3C و I2C و SPI اشاره کرد.

مشخصات فنی 

  • Number of Axis: 3-Axis
  • Output type: Digital – I2C or I3C or SPI
  • Accelerometer FSR: ±2, ±4, ±8, ±16(g)
  • Accelerometer Sensitivity SF: 16384, 2048 (LSB/g), 4096, 8192
  • Accelerometer ADC: 16 Bit

کاربردها

  • Tilt sensing
  • Platform stabilization
  • Robotics

ماژول شتاب‌سنج Gebra IIM-42351

  • با توجه به اینکه دسترسی به پایه‌های سنسور دشوار است، کاربران برای توسعه سخت‌افزاری و نرم‌افزاری این سنسور به یک برد ابتدایی (starter board) و درایور نیاز دارند. برای راحتی کاربران، GebraMS برد ماژول شتاب‌سنج Gebra IIM-42351 را طراحی کرده است. کاربران می‌توانند به کمک این برد، به مهم‌ترین پایه‌های سنسور به‌راحتی دسترسی پیدا کنند.
  • کافی است برد ماژول شتاب‌سنج Gebra IIM-42351 را روی برد (Breadboard) قرار دهید و سپس با یکی از بردهای Arduino، Raspberry Pi یا Discovery و با اعمال ولتاژ مناسب، آن را راه‌اندازی کنید.
  • ما به‌ویژه استفاده از Gebra STM32F303 را توصیه می‌کنیم؛ چرا که این برد دارای رگولاتور داخلی ۳.۳ ولت است و ترتیب پایه‌های آن با تمامی ماژول‌های Gebra هماهنگ است (استاندارد GEBRABUS)، بنابراین می‌توانید برد ماژول شتاب‌سنج Gebra IIM-42351 را مستقیماً به سوکت مربوطه متصل کرده و بدون نیاز به سیم‌کشی، برنامه‌نویسی را آغاز کنید.

ویژگی‌های ماژولGebraBit IIM42351

  • User-selectable module power supply voltage between 1V8 and 3V3
  • User-selectable module I/O logic voltage between 1V8 and 3V3
  • User-selectable interface protocol (I2C or SPI)
  • User-selectable I2C address (AD0)
  • Access to all data pins of the sensor
  • On Board, ON/OFF LED indicator
  • Pin Compatible with GEBRABUS
  • It can be used as a daughter board of GebraBit MCU Modules
  • Featuring Castellated pad (Assembled as SMD Part)
  • Separatable screw parts to reduce the size of the board
  • Package: GebraBit small (36.29mm x 32.72mm) 

پین های ماژول

پین های تغذیه

  • 3V3 : این پین می تواند با توجه به وضعیت Jumper Selector های VDDSEL و VDIOSEL ،تغذیه اصلی سنسور و سطح منطق(Logic Level) ارتباط دییجیتال(I2C یا SPI) سنسور را تامین کند.
  • 1V8 : این پین می تواند با توجه به وضعیت Jumper Selector های VDDSEL و VDIOSEL ،تغذیه اصلی سنسور و سطح منطق(Logic Level) ارتباط دییجیتال(I2C یا SPI) سنسور را تامین کند.
  • GND : این پین زمین مشترک برای تغذیه و سطح منطق(Logic Level) سنسور می باشد.

پین های I2C

با استفاده از Jumper Selector های تعبیه شده روی برد می توان نوع ارتباط با ماژول را انتخاب کرد.در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت چپ باشد،پروتکل I2C اتنخاب شده است.وضعیت جامپر AD0 SEL آدرس I2C سنسور ( 0x68 یا 0x69 ) را مشخص می کند.

  • SDA : این پین، پین دیتای ارتباط I2C می باشد، که به پین دیتای متناظر در میکروکنترلر(پردازنده) ، متصل می شود.با توجه به وضعیت جامپر VDIOSEL ،می توانید از سطح منطق(Logic Level) با ولتاژ 1V8 یا 3V3  استفاده کنید.این پین با یک مقاومت 10K پول آپ (Pull Up) شده است.
  • SCL : این پین، پین کلاک ارتباط I2C می باشد، که به پین کلاک متناظر در میکروکنترلر(پردازنده) ، متصل می شود.با توجه به وضعیت جامپر VDIOSEL ،می توانید از سطح منطق(Logic Level) با ولتاژ 1V8 یا 3V3 استفاده کنید.این پین با یک مقاومت 10K پول آپ (Pull Up) شده است.

پین های SPI

با استفاده از Jumper Selector های تعبیه شده روی برد می توان نوع ارتباط با ماژول را انتخاب کرد.در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت راست باشد،پروتکل SPI اتنخاب شده است.وضعیت جامپر AD0 SEL در این حالت بی تاثیر است.

  • SDI(MOSI) : از این پین، برای ارسال دیتا از میکروکنترلر(پردازنده) به ماژول(سنسور) استفاده میشود.نام اختصاری این پین برگرفته از عبارت لاتین Serial Data In / Microcontroller Out Sensor In می باشد.
  • SDO(MISO) : از این پین، برای ارسال دیتا از ماژول(سنسور) به میکروکنترلر(پردازنده) استفاده میشود.نام اختصاری این پین برگرفته از عبارت لاتین Serial Data Out / Microcontroller In Sensor Out می باشد.
  • SCK : این پین، پین کلاک برای ارتباط SPI بوده که از نوع ورودی (Input) برای سنسور محسوب و به پین کلاک متناظر در میکروکنترلر(پردازنده) ، متصل می شود.
  • CS : این پین، پین Chip Select برای ارتباط SPI با ماژول(سنسور) می باشد، که با اعمال ولتاژ LOW (0V) ،ماژول(سنسور) برای ارتباط SPI انتخاب می شود.این پین از نوع ورودی (Input) برای سنسور محسوب می شود.

در صورتی که می خواهید از چندین ماژول GebraBit IIM42351 به صورت همزمان استفاده کنید، کافیست پین های SDO , SDI , SCK همه انها و میکرکنترلر(پردازنده) را به هم متصل کرده و به CS هر کدام، یک پین منحصر به فرد اختصاص دهید.

دیگر پین ها

  • INT : پین Interrupt (وقفه) سنسور IAM42351 بوده که با توجه به دیتاشیت سنسور، کاربر می تواند شرایط وقوع وقفه،حالات و روش های وقوع وقفه و … را تنظیم کند.
  • FSY(FSYNC) : برای همگام سازی (Synchronization) سنسور با یک منبع خارجی ، از این پین استفاده میشود.برای اطلاعات بیشتر دیتاشیت سنسور مطالعه شود.به صورت پیش فرض این پین با مقاومت R3 به زمین متصل شده است.جهت استفاده از پین، مقاومت R3 باید از ماژول ، جدا (دمونتاژ) گردد.

معرفی بخش های ماژول

سنسور IIM42351

ای سی اصلی این ماژول بوده که در مرکز ماژول قرار گرفته و مدار ان طراحی شده است.

جامپرهای انتخاب پروتکل ارتباطی

  • در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت چپ باشد،پروتکل I2C اتنخاب شده است.
  • در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت راست باشد،پروتکل SPI اتنخاب شده است.
  • به صورت پیش فرض نیز پروتکل I2C انتخاب شده است.

جامپرAD0 SEL

در صورت انتخاب پروتکل I2C  ،وضعیت جامپر AD0 SEL آدرس I2C سنسور ( 0x68=>0, 0x69=>1) را مشخص می کند.

به صورت پیش فرض مقاومت 0R روی 0 قرار داشته و  آدرس  0x68  انتخاب شده است.

جامپرVDIO SEL

 با توجه به وضعیت مقاومت  0R این جامپر ، سطح منطق (Logic Level) ارتباط دیجیتال(I2C  یا SPI) سنسور از بین 1V8 و 3V3 انتخاب می شود.

به صورت پیش فرض سطح منطق (Logic Level) ارتباط دیجیتال(I2C  یا SPI) سنسور 3V3 انتخاب شده است.

جامپرVDD SEL

با توجه به وضعیت مقاومت  0R این جامپر ، ولتاژ اصلی تغذیه سنسور از بین 1V8 و 3V3 انتخاب میشود

به صورت پیش فرض ولتاژ اصلی تغذیه سنسور 3V3 انتخاب شده است.

تغذیه LED

با توجه به وضعیت جامپر VDD SEL و اعمال ولتاژ به ماژول توسط پین مربوطه، LED ماژول روشن می شود.

اتصال به پردازنده

اتصال I2C با GebraBit STM32F303

ابتدا اطمینان حاصل کنید که پروتکل I2C با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال I2C ماژول GebraBit IIM42351 به ماژول میکروکنترلرGebraBit STM32F303 بعد از تعریف کردن SDA و SCL رو پین های PB9 و PB8 (برای راحتی کار در STMCUBEMX)مراحل زیر را دنبال کنید:

  • پین 3V3 ماژول IIM42351 را به پین 3V3 خروجی ماژول میکروکنترلر متصل کنید.(سیم قرمز)
  • پین GND ماژول IIM42351 را به پین GND ماژول میکروکنترلر متصل کنید.(سیم سیاه)
  • پین SCL ماژول IIM42351 را به پین PB8 ماژول میکروکنترلر (SCL) متصل کنید.(سیم آبی)
  • پین SDA ماژول IIM42351 را به پین PB9 ماژول میکروکنترلر (SDA) متصل کنید.(سیم زرد)

توجه: با توجه به اینکه پین PA14 ماژول میکروکنترلرGebraBit STM32F303 برای پروگرام کردن میکروکنترلر استفاده میشود،تنظیم I2C بر روی پین های PA14 و PA15 در این ورژن مقدور نمی باشد،لذا در اتصال I2C به ماژول میکروکنترلرGebraBit STM32F303 در این ورژن ، ماژول GebraBit IIM42351 نمی تواند به صورت Pin to Pin بر روی آن قرار گیرد.برای راحتی کار می توانید پروتکل SPI را با استفاده از جامپر های روی برد انتخاب کرده و سپس ماژول GebraBit IIM42351 را به صورت Pin to Pin بر روی ماژول GebraBit STM32F303 قرار دهید.

اتصال SPI با GebraBit STM32F303

ابتدا اطمینان حاصل کنید که پروتکل SPI با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال SPI ماژول GebraBit IIM42351 به ماژول میکروکنترلرGebraBit STM32F303 بعد از تعریف کردن SDI و SDO و SCK و CS رو پین های PB5 و PB4 و PB3 و PC13 (برای راحتی کار در STMCUBEMX) ماژول GebraBit IIM42351 را به صورت Pin to Pin به راحتی بر روی ماژول GebraBit STM32F303 قرار دهید.

در اینجا برای درک بهتر اتصال جداگانه ماژول‌ها نشان داده شده است.

اتصال SPI یا I2C با GebraBit ATMEGA32A

با توجه به اینکه پین های SPI و I2C میکروکنترلر ATMEGA32A بر اساس استاندارد GEBRABUS متناظر با پین های SPI و I2C  دیگر ماژول های GEBRABIT می باشد،  ماژول GebraBit IIM42351 را به صورت Pin to Pin به راحتی بر روی ماژول GebraBit ATMEGA32A قرار داده و با تغییر وضعیت مقاومت های جامپر انتخاب پروتکل، با ماژول GebraBit IIM42351 از طریق SPI یا I2C ارتباط برقرار کنید.

I2C Connection

SPI Connection

توجه: در صورت استفاده از ماژول‌های میکروکنترلری GebraBit توجه داشته باشید که جامپر سلکتورهای تغذیه ماژول GebraBit  IIM42351 روی 3V3 باشد تا راحت تر بتوانید ولتاژ3V3 را از ماژول میکروکنترلری گرفته و ماژول را فعال کنید.

اتصال I2C با ARDUINO UNO

ابتدا اطمینان حاصل کنید که پروتکل I2C با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال I2C ماژول GebraBit IIM42351 به ARDUINO UNO مراحل زیر را دنبال کنید:

  • پین 3V3 ماژول IIM42351 را به پین 3V3 خروجی برد ARDUINO UNO متصل کنید.(سیم قرمز)
  • پین GND ماژول IIM42351 را به پین GND برد ARDUINO UNO متصل کنید.(سیم سیاه)
  • پین SCL ماژول IIM42351 را به پین A5 برد ARDUINO UNO( (SCLمتصل کنید.(سیم آبی)
  • پین SDA ماژول IIM42351 را به پین A4 برد ARDUINO UNO( (SDAمتصل کنید.(سیم نارنجی)

اتصال SPI با ARDUINO UNO

ابتدا اطمینان حاصل کنید که پروتکل SPI با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال SPI ماژول GebraBit IIM42351 به ARDUINO UNO مراحل زیر را دنبال کنید:

  • پین 3V3 ماژول IIM42351 را به پین 3V3 خروجی برد ARDUINO UNO متصل کنید.(سیم قرمز)
  • پین GND ماژول IIM42351 را به پین GND برد ARDUINO UNO متصل کنید.(سیم سیاه)
  • پین SDI ماژول IIM42351 را به پین D11 برد ARDUINO UNOمتصل کنید.(سیم زرد)
  • پین SDO ماژول IIM42351 را به پین D12 برد ARDUINO UNOمتصل کنید.(سیم بنفش)
  • پین SCK ماژول IIM42351 را به پین D13 برد ARDUINO UNOمتصل کنید.(سیم نارنجی)
  • پین CS ماژول IIM42351 را به پین D10 برد ARDUINO UNOمتصل کنید.(سیم آبی)
نوع ماژول

شتاب‌سنج

ولتاژ تغذیه

1V8, 3V3

تعداد محور

3

نوع خروجی

I2C, I3C, SPI, Digital

FSR

±2, ±4, ±8, ±16(g)

رزولوشن ADC

16 Bit

جریان مصرفی

10 mA to 30 mA (Typ. 20 mA)

حساسیت شتاب‌سنج

16384, 2048 (LSB/g), 4096, 8192

ابعاد

Gebra small(36.29mm x 32.72mm)

دمای کاری

-40°C to 105°C

هدف ما از انجام این پروژه چیست؟

در این بخش قصد داریم سنسور IIM42351 را به وسیله میکروکنترلر آرم، سری STM32F راه اندازی کنیم. به منظور استفاده راحت تر و بهینه تر در این پروژه از دو ماژول آماده GB309A و GebraBit STM32F303 استفاده میکنیم.

این دو ماژول شامل مینیمم قطعات لازم سنسور IIM42351و میکروکنترلر STM32F میباشند که توسط تیم جبرابیت جهت آسان سازی کار فراهم شده اند.

در این آموزش چه چیزهایی یاد میگیریم؟

شما در این بخش ضمن راه اندازی و استفاده از سنسورIIM42351  ، به طور خلاصه با تمامی رجیسترهای سنسور IIM42351، نحوه تنظیم بخش های مختلف میکروکنترلر STM32 برای راه اندازی این سنسور با استفاده از پروتکل SPI، چگونگی استفاده از فایل کتابخانه و درایور مختص ماژول GB6309A، نحوه فراخوانی توابع و در نهایت دریافت داده های سنسور در کامپایلر Keil  نیز آشنا خواهید شد.

برای شروع این پروژه به چه چیزهایی نیاز داریم؟

برای اجرای این پروژه به سخت‌افزار و نرم‌افزار نیاز داریم. عناوین این سخت‌افزارها و نرم‌افزارها در جدول زیر به شما ارائه شده است و می‌توانید با کلیک بر روی هر یک، آن را تهیه/دانلود کرده و برای شروع آماده شوید.

سخت افزارهای مورد نیازنرمافزارهای مورد نیاز
ST-LINK/V2 ProgrammerKeil uVision Programmer
STM32 Microcontroller – ( Gebra STM32f303 )STM32CubeMX Program
ماژول شتاب‌سنج Gebra IIM-42351
Cable and Breadboard

برای ارتباط از طریق پروتکل SPI ابتدا باید با استفاده از جامپرهای روی برد پروتکل ارتباطی SPI انتخاب شود، سپس آن را مانند تصویر زیر به صورت Pin To Pin بر روی ماژول GebraBit STM32F303 قرار می دهیم:

توجه : توجه داشته باشید که تصویر بالا صرفا برای نمایش نحوه قرار گیری ماژول GebraBit IIM42351 بر روی ماژول GebraBit STM32F303 می باشد و کاربران برای استفاده از پروتکل ارتباطی SPI باید نسبت به انتخاب صحیح وضعیت جامپر های روی برد اقدام کنند.

در نهایت مقادیر دما و شتاب را در سه محور X , Y , Z به صورت Real Time در پنجره Watch1 کامپایلر Keil در حالت Debug Session مشاهده خواهیم کرد.

تنظیمات STM32CubeMX

در ادامه به توضیح تنظیمات مربوط به هریک از بخش های I2C , RCC , Debug , Clock در میکروکنترلر STM32F303 برای راه اندازی ماژول GebraBit IAM20380 ، خواهیم پرداخت.

I2C تنظیمات

برای برقراری ارتباط I2C بین Gebra STM32F303و ماژول شتاب‌سنج Gebra IIM-42351، از مسیر Connectivity -> I2C گزینه Standard Mode را انتخاب کرده و پایه‌های PB8 و PB9 را به ترتیب به‌عنوان SCL و SDA تنظیم کنید.

نکته: اگر از میکروکنترلر دیگری استفاده می‌کنید یا می‌خواهید از پایه‌های متفاوتی برای I2C استفاده کنید، کافی است روی پایه دلخواه کلیک کرده و گزینه‌های i2c1_scl و i2c1_sda را انتخاب نمایید.

RCC / Clock تنظیمات

به‌دلیل وجود کریستال خارجی (External Crystal) در برد جبرابیت STM32F303، در بخش “RCC” گزینه “Crystal/Ceramic Resonator” را انتخاب می‌کنیم.

سپس از صفحه Clock Configuration حالت PLLCLK را انتخاب کرده و سایر تنظیمات لازم را انجام می‌دهیم (برای اطلاعات بیشتر کلیک کنید).

Debug & Programming تنظیمات

برای کاهش تعداد پایه‌ها در زمان Debug and Program، در این ماژول گزینه “Serial Wire” را از بخش “Debug” در بلوک “SYS” انتخاب می‌کنیم که مربوط به پایه‌های “SWCLK” و “SWDIO” است.

Project Manager تنظیمات

تنظیمات “Project Manager” به صورت زیر است؛ در اینجا از نسخه “5.32” محیط توسعه “MDK-ARM” استفاده کرده‌ایم. اگر شما برای برنامه‌نویسی از محیط توسعه دیگری استفاده می‌کنید، باید از قسمت Toolchain گزینه مربوط به IDE مورد استفاده خود را انتخاب کنید.

پس از تکمیل تمامی تنظیمات بالا، روی گزینه GENERATE CODE کلیک می‌کنیم.

Source Code

کتابخانه پروژه (Library)

جبرابیت علاوه بر طراحی ماژولار انواع حسگرها و قطعات مجتمع، برای سهولت در نصب و توسعه نرم‌افزار توسط کاربران، مجموعه‌ای از کتابخانه‌های ساختاریافته و مستقل از سخت‌افزار را به زبان C ارائه می‌دهد. در این راستا، کاربران می‌توانند کتابخانه‌ی مربوط به ماژول مورد نظر خود را در قالب فایل‌های “.h” و “.c” دانلود کنند.

با افزودن کتابخانه‌ی ارائه‌شده توسط جبرابیت به پروژه (راهنمای افزودن فایل به پروژه)، می‌توانیم به‌راحتی کد خود را توسعه دهیم. فایل‌های مربوطه را می‌توانید در انتهای پروژه یا در بخش صفحات مرتبط در سمت راست مشاهده کنید.

تمام توابع تعریف‌شده در کتابخانه با جزئیات کامل توضیح داده شده‌اند و کلیه پارامترهای ورودی و مقادیر بازگشتی هر تابع به‌صورت مختصر شرح داده شده است. از آنجا که این کتابخانه‌ها مستقل از سخت‌افزار هستند، کاربر می‌تواند آن‌ها را به‌سادگی به کامپایلر دلخواه خود اضافه کرده و با میکروکنترلر یا برد توسعه مورد نظر خود استفاده کند.

فایل هدر GebraBit_IIM42351.h

در این فایل بر اساس دیتاشیت سنسور یا ای سی ، تمامی آدرس رجیسترها، مقادیر هریک از رجیسترها به صورت Enumeration تعریف شده است.همچنین بدنه سنسور IIM42351 و کانفیگ های مربوط به هریک از بلوک های داخلی سنسور  IIM42351 به صورت STRUCT  با نام  GebraBit_IIM42351 نیز تعریف شده است.که نهایتا در محیط  Debug Session تمامی کانفیگ های مربوط به هر بلوک به صورت Real Time قابل مشاهده است.

IIM42351_Bank_Sel Enum

بانک های رجیستری داخلی سنسور، در این enum تعریف شده است:

C

typedef enum bank_sel
{
BANK_0 = 0 ,
BANK_1     ,
BANK_2     ,
BANK_3     ,
BANK_4
}IIM42351_Bank_Sel;

IIM42351_Interface Enum

برای انتخاب پروتکل ارتباطی با سنسور از این enum استفاده می شود:

C

typedef enum  interface
{
 NOT_SPI = 0     ,
 IS_SPI
}IIM42351_Interface;

IIM42351_Soft_Reset_Config Enum

برای reset نرم افزاری سنسور از این enum استفاده می شود:

C

typedef enum Soft_Reset_Config
{
IIM42351_RESET     = 0x01,
IIM42351_NOT_RESET = 0x00,
} IIM42351_Soft_Reset_Config;

IIM42351_PIN9_FUNCTION Enum

تنظیمات عملکرد پین شماره 9 از این enum استفاده می شود:

C

typedef enum Pin9_Function
{
INT2   = 0,
FSYNC  = 1,
CLKIN  = 2

} IIM42351_PIN9_FUNCTION;

IIM42351_Accel_Fs_Sel Enum

برای تنظیم Full Scale Range سنسور از این enum استفاده می شود:

C

typedef enum accel_fs_sel
{
FS_16g = 0 ,
FS_8g      ,
FS_4g      ,
FS_2g
}IIM42351_Accel_Fs_Sel;

IIM42351_Accel_Scale_Factor Enum

مقادیر Scale Factor متناظر با Full Scale Range در این enum تعریف شده است:

C

typedef enum Scale_Factor
{
SCALE_FACTOR_2048_LSB_g  = 2048    ,
SCALE_FACTOR_4096_LSB_g  = 4096    ,
SCALE_FACTOR_8192_LSB_g  = 8192    ,
SCALE_FACTOR_16384_LSB_g = 16384
}IIM42351_Accel_Scale_Factor;

IIM42351_Accel_ODR Enum

با استفاده از مقادیر این enum مقدار Output Data Rate Sensor  مشخص می شود:

C

typedef enum accel_odr
{
ODR_8KHz    = 3,
ODR_4KHz    = 4,
ODR_2KHz    = 5,
ODR_1KHz    = 6,
ODR_200Hz   = 7,
ODR_100Hz   = 8,
ODR_50Hz    = 9,
ODR_25Hz    = 10,
ODR_12Hz5   = 11,
ODR_6Hz25   = 12,
ODR_3Hz125  = 13,
ODR_1Hz5625 = 14,
ODR_500Hz   = 15
}IIM42351_Accel_ODR;

IIM42351_FIFO_MODE Enum

حالت کاری FIFO سنسور با استفاده از مقادیر این enum تنظیم می شود:

C

typedef enum FIFO_Config
{
BYPASS          = 0 ,
STREAM_TO_FIFO      ,
STOP_ON_FULL
}IIM42351_FIFO_MODE ;

IIM42351_Ability Enum

برای فعال و غیر فعال کردن بخش های مختلف سنسور از مقادیر این enum استفاده می شود:

C

typedef enum Ability
{
Disable = 0     ,
Enable
}IIM42351_Ability;

IIM42351_Data_Endian Enum

برای مشخص کردن فرمت دیتا در FIFO از مقادیر این enum استفاده می شود :

C

typedef enum
{
LITTLE = 0     ,
BIG
}IIM42351_Data_Endian;

IIM42351_Timestamp_Resolution Enum

برای تعیین رزولوشن Time Stamp سنسور از مقادیر این enum تنظیم می شود:

C

typedef enum timestamp_resolution
{
_1_uS   = 0 ,
_16_uS
} IIM42351_Timestamp_Resolution;

IIM42351_FIFO_Counting Enum

برای مشخص کردن نحوه شمارش FIFO از مقادیر این enum استفاده می شود:

C

typedef enum
{
IN_BYTES = 0     ,
IN_RECORDS
}IIM42351_FIFO_Counting;

IIM42351_UI_Filter_Order Enum

برای تعیین فیلتر مورد استفاده در سنسور از مقادیر این enum استفاده می شود:

C

typedef enum UI_Filter_Order
{
_1_ORDER = 0  ,
_2_ORDER      ,
_3_ORDER
}IIM42351_UI_Filter_Order ;

IIM42351_Power_Mode Enum

برای تنظیم حالت Power Mode سنسور از مقادیر این enum استفاده می شود:

C

typedef enum Power_Mode
{
IIM42351_LOW_NOISE  = 0x03,
IIM42351_LOW_POWER  = 0x02,
IIM42351_ACCEL_OFF  = 0x01
} IIM42351_Power_Mode;

IIM42351_Low_Noise_Filter_BW Enum

برای تنظیم فیلتر در حالت Low Noise در سنسور از مقادیر این enum استفاده می شود:

C

typedef enum
{
LN_FILTER_BW_40 = 0x7 ,
LN_FILTER_BW_20 = 0x6 ,
LN_FILTER_BW_16 = 0x5 ,
LN_FILTER_BW_10 = 0x4 ,
LN_FILTER_BW_8  = 0x3 ,
LN_FILTER_BW_5  = 0x2 ,
LN_FILTER_BW_4  = 0x1 ,
LN_FILTER_BW_2  = 0x0
} IIM42351_Low_Noise_Filter_BW;

IIM42351_ Low_Power_Filter_AVG Enum

برای تعیین فیلتر مورد استفاده در سنسور در حالت Low Power از مقادیر این enum استفاده می شود:

C

typedef enum
{
 LP_1x_AVG_FILTER  = 0x1 ,
 LP_16x_AVG_FILTER = 0x6
} IIM42351_Low_Power_Filter_AVG;

IIM42351_Preparation Enum

برای تعیین فیلتر مورد استفاده در سنسور در حالت Low Power از مقادیر این enum استفاده می شود:

C

typedef enum Preparation
{
IS_NOT_Ready = 0     ,
IS_Ready
}IIM42351_Preparation;

IIM42351_Reset_Status Enum

وضعیت نهاییReset  نرم افزاری سنسور در این enum بیان شده است:

C

typedef enum Reset_Status
{
FAILED = 0     ,
DONE
}IIM42351_Reset_Status;

GebraBit_IIM42351 structure

تمامی اطلاعات و کانفیگ اجرا شده بر روی سنسور در این Structure ذخیره شده و می تواند تغییرات در هر بخش از سنسور را در محیط Debug Session مشاهده نمود.

Declaration of functions

در پایان این فایل تمامی توابع جهت خواندن و نوشتن در رجیستر های IIM42351 ، کانفیک سنسور و FIFO و دریافت داده از سنسور اعلان شده است:

C

/********************************************************
 *Declare Read&Write IIM42351 Register Values Functions *
 ********************************************************/
extern	uint8_t	GB_IIM42351_Read_Reg_Data ( uint8_t regAddr, IIM42351_Bank_Sel regBank, uint8_t* data);
extern	uint8_t GB_IIM42351_Read_Reg_Bits (uint8_t regAddr, IIM42351_Bank_Sel regBank, uint8_t start_bit, uint8_t len, uint8_t* data);
extern	uint8_t GB_IIM42351_Burst_Read(uint8_t regAddr, IIM42351_Bank_Sel regBank, uint8_t *data, uint16_t byteQuantity);
extern	uint8_t GB_IIM42351_Write_Reg_Data(uint8_t regAddr, IIM42351_Bank_Sel regBank, uint8_t data);
extern	uint8_t	GB_IIM42351_Write_Reg_Bits(uint8_t regAddr, IIM42351_Bank_Sel regBank, uint8_t start_bit, uint8_t len, uint8_t data);
extern	uint8_t GB_IIM42351_Burst_Write		( uint8_t regAddr, IIM42351_Bank_Sel regBank, uint8_t *data, 	uint16_t byteQuantity);
/********************************************************
 *       Declare IIM42351 Configuration Functions       *
 ********************************************************/
extern void GB_IIM42351_Bank_Selection( IIM42351_Bank_Sel bsel);
extern void GB_IIM42351_Who_am_I(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Select_SPI4_Interface( IIM42351_Interface spisel);
extern void GB_IIM42351_Select_PIN9_Function( IIM42351_PIN9_FUNCTION pin9f);
extern void GB_IIM42351_DISABLE_FSYNC ( IIM42351_Ability able ) ;
extern void GB_IIM42351_DISABLE_RTC_Mode ( void ) ;
extern void GB_IIM42351_SET_Time_Stamp_Register(IIM42351_Ability ability);
extern void GB_IIM42351_Set_Timestamp_Resolution (  IIM42351_Timestamp_Resolution res ) ;
extern void GB_IIM42351_SET_INT_ASYNC_RESET_ZERO(void );
/********************************************************
 *          Declare IIM42351 FIFO Functions             *
 ********************************************************/
extern void GB_IIM42351_Set_FIFO_MODE ( IIM42351_FIFO_MODE mode ) ;
extern void GB_IIM42351_SET_FIFO_Count ( IIM42351_FIFO_Counting counting , IIM42351_Data_Endian endian ) ;
extern void GB_IIM42351_SET_AllPackets_To_FIFO( IIM42351_Ability allpack);
extern void GB_IIM42351_SET_FIFO_WATERMARK (IIM42351_Ability watermark , uint16_t wm );
extern void GB_IIM42351_SET_FIFO_Decimation_Factor (uint8_t factor );
extern void GB_IIM42351_FIFO_Configuration ( GebraBit_IIM42351 * iim42351  ) ;
extern void GB_IIM42351_SET_FIFO_High_Resolution( IIM42351_Ability highres);
/********************************************************
 *          Declare IIM42351 ACCEL Functions             *
 ********************************************************/
extern void GB_IIM42351_Set_ACCEL_FS ( GebraBit_IIM42351 * iim42351 , IIM42351_Accel_Fs_Sel fs )  ;
extern void GB_IIM42351_Set_ACCEL_ODR (  IIM42351_Accel_ODR odr ) ;
extern void GB_IIM42351_UI_Filter_Order (  IIM42351_UI_Filter_Order order ) ;
extern void GB_IIM42351_ACCEL_LN_Filter_Configuration( IIM42351_Low_Noise_Filter_BW filter);
extern void GB_IIM42351_ACCEL_LP_Filter_Configuration( IIM42351_Low_Power_Filter_AVG filter);
extern void GB_IIM42351_Set_Power_Management(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_SET_Data_Ready_Interrupt(IIM42351_Ability ability);
extern IIM42351_Preparation GB_IIM42351_Check_Data_Preparation(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_Sensor_Data_Endian ( IIM42351_Data_Endian * data_end  ) ;
/********************************************************
 *          Declare IIM42351 DATA Functions             *
 ********************************************************/
extern void GB_IIM42351_Get_Temp_Register_Raw_Data(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_Temp_Register_Valid_Data(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_ACCEL_DATA_X_Register_Raw(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_ACCEL_DATA_Y_Register_Raw(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_ACCEL_DATA_Z_Register_Raw(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_ACCEL_DATA_X_Register_Valid_Data(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_ACCEL_DATA_Y_Register_Valid_Data(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_ACCEL_DATA_Z_Register_Valid_Data(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_Temperature(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_XYZ_ACCELERATION(GebraBit_IIM42351 * iim42351);
extern void GB_IIM42351_Get_Data(GebraBit_IIM42351 * iim42351);
/********************************************************
 *          Declare IIM42351 HIGH LEVEL Functions       *
 ********************************************************/
extern void GB_IIM42351_Format_Data_Base_On_Endian(GebraBit_IIM42351 * iim42351, const uint8_t *datain, uint16_t *dataout);
extern void GB_IIM42351_Soft_Reset ( GebraBit_IIM42351 * iim42351 );
extern void GB_IIM42351_initialize( GebraBit_IIM42351 * iim42351 );
extern void GB_IIM42351_Configuration(GebraBit_IIM42351 * iim42351);

فایل سورس GebraBit_IIM42351.c

در فایل سورس GebraBit_IIM42351.c که به زبان C نوشته شده ، تمامی توابع با جزئیات کامل، کامنت گذاری شده و تمامی پارامتر های دریافتی در آرگومان توابع و مقادیر بازگشتی از آنها ، بطور واضح توضیح داده شده است.از این رو در این قسمت به همین توضیحات اکتفا کرده و کاربران را برای اطلاعات بیشتر به بررسی مستقیم از این فایل دعوت می کنیم.

برنامه نمونه در Keil

بعد از تولید پروژه Keil با استفاده از STM32CubeMX و اضافه کردن کتابخانه GebraBit_IIM42351.c ارائه شده توسط GebraBit ، به بررسی قسمت اصلی برنامه آموزشی نمونه، فایل main.c و مشاهده خروجی ماژول GebraBit IIM42351 در قسمت watch در محیط Debugging برنامه Keil می پردازیم.

شرح فایل main.c

اگر به ابتدای فایل main.c دقت کنید،متوجه می شوید که هدر GebraBit_IIM42351.h برای دسترسی به ساختار ها ، Enum ها و توابع مورد نیاز ماژول GebraBit IIM42351 ، اضافه شده است.در قسمت بعدی متغیری به نام IIM42351_Module از نوع ساختار GebraBit_IIM42351 (این ساختار در هدر GebraBit_IIM42351 بوده و در بخش توضیحات کتابخانه GebraBit_IIM42351توضیح داده شد) که برای پیکربندی ماژول GebraBit IIM42351 می باشد،تعریف شده است:

C

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_IIM42351 IIM42351_Module;
/* USER CODE END PTD */

در بخش بعدی کد نوشته شده، پیکربندی و تنظیمات ماژول GebraBit IIM42351  با استفاده از ساختار IIM42351_Module انجام شده است.در نهایت با ارجاع ساختار IIM42351_Module به آرگومان توابع GB_IIM42351_initialize() و GB_IIM42351_Configuration()، ماژول GebraBit IIM42351 پیکربندی می شود:

C

GB_IIM42351_initialize( &IIM42351_Module );
GB_IIM42351_Configuration(&IIM42351_Module);

و در نهایت در قسمت while برنامه ، مقادیر ماژول GebraBit IIM42351 در 3 محور X , Y , Z  و دما به طور پیوسته دریافت میشود:

C

GB_IIM42351_Get_Data( &IIM42351_Module )

متن کد فایل main.c:

C

/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
//#include "i2c.h"
#include "spi.h"
#include "gpio.h"
#include "GebraBit_IIM42351.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_IIM42351 IIM42351_Module;
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
               IIM42351_Module.Bank_Sel = BANK_0 ;
	IIM42351_Module.INT_ASYNC_RESET = 0 ;
	IIM42351_Module.Interface = IS_SPI ;
	IIM42351_Module.Pin9_Function = FSYNC ;
	IIM42351_Module.FSYNC = Disable;
	IIM42351_Module.RTC_Mode = Disable ;
	IIM42351_Module.ACCEL_FS_SEL = FS_4g ;
	IIM42351_Module.ACCEL_ODR = ODR_1KHz ;
	IIM42351_Module.UI_FILTER_ORDER = _2_ORDER ;
	IIM42351_Module.Power_Mode = IIM42351_LOW_NOISE ;
	IIM42351_Module.LN_Filter_BW = LN_FILTER_BW_4 ;
	IIM42351_Module.Data_Ready_INT = Enable ;
	//IIM42351_Module.SENSOR_DATA_ENDIAN = BIG ;
	IIM42351_Module.FIFO_STREAM = Disable ;
	IIM42351_Module.FIFO_MODE = BYPASS ;
	IIM42351_Module.AllPackets_To_FIFO = Disable ;
	IIM42351_Module.FIFO_WATERMARK = Disable ;
	//IIM42351_Module.VALID_ACCEL_DATA_Z =  0.0f ;



  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  //MX_I2C1_Init();
  MX_SPI1_Init();
 GB_IIM42351_initialize( &IIM42351_Module );
 GB_IIM42351_Configuration(&IIM42351_Module);
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
    GB_IIM42351_Get_Data( &IIM42351_Module )  ;
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
  PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STLINK V2

پس از ایجاد پروژه Keil با استفاده از STM32CubeMX و افزودن کتابخانه، آداپتور STLINKV2 را متصل کرده و برنامه‌نویس STLINK V2 را به برد جبرابیت STM32F303 وصل می‌کنیم.

وقتی برنامه‌نویس STLINK V2 را به برد جبرابیت STM32F303 متصل می‌کنید، نیازی به تغذیه جداگانه ماژول نیست، زیرا ولتاژ تغذیه را مستقیماً از برنامه‌نویس STLINK V2 دریافت می‌کند.

سپس روی گزینه Build (F7) کلیک کرده و پنجره Build Output را برای بررسی خطاهای احتمالی کنترل می‌کنیم.

در نهایت وارد حالت Debug شده و با اضافه کردن IIM42351_Module به پنجره  watch و اجرای برنامه ، تغییرات مقادیر دما و ماژول GebraBit IIM42351 را در 3 محور X , Y , Z مشاهده می کنیم:

برای اطلاع دقیق از مقادیر کاری و حداکثر مقادیر مجاز آی‌سی‌ها، کاربران باید به دیتاشیت اصلی و رسمی آن قطعات مراجعه کنند

اگر هر یک از اسناد فنی ناقص یا اشتباه است، لطفاً به ما اطلاع دهید

با نظرات خود به تیم جبرا در بهبود کیفیت کمک کنید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

توجه!

محصولات ما صرفاً برای اهداف تحقیقاتی و توسعه طراحی شده‌اند. جبرابیت صراحتاً اعلام می‌کند که در صورت استفاده کاربران از این محصولات در کاربردهای حساس و دقیق از جمله امور مالی یا مواردی که به جان و مال انسان آسیب می‌زنند، هیچ‌گونه مسئولیتی را نمی‌پذیرد.

برای اطلاع دقیق از مقادیر کاری و حداکثر مقادیر مجاز آی‌سی‌ها (IC)، کاربران باید حتماً به دیتاشیت اصلی و رسمی آن قطعات مراجعه کنند.

سبد خرید
پیمایش به بالا