ماژول ژیروسکوپ و شتاب‌سنج Gebra ICM20689

$5,44

نوع ماژول

ماژول ژیروسکوپ و شتاب‌سنج

تعداد محور

6

ولتاژ تغذیه

1V8, 3V3

جریان مصرفی

10 mA to 30 mA (Typ. 20 mA)

نوع خروجی

I2C, SPI, Digital

ژیروسکوپFSR

±250, ±500, ±1000, ±2000(dps)

حساسیت ژیروسکوپ

131, 16.4 (LSB/dps), 32.8, 65.5

شتاب‌سنج FSR

±2, ±4, ±8, ±16(g)

حساسیت شتاب‌سنج

16384, 2048 (LSB/g), 4096, 8192

رزولوشن ADC

16 Bit

ابعاد

Gebra small(36.29mm x 32.72mm)

دمای کاری

-40 to +85 °C

سنسور موشن ترکینگ ICM20689

ICM-20689 یک دستگاه 6 محوره MotionTracking است که ترکیبی از یک ژیروسکوپ 3 محوره، شتاب سنج 3 محوره، و یک پردازشگر حرکتی دیجیتال ™ (DMP)در پکیج سایزsmall 4×4×0.9   میلی متر (24-پین QFN)  می باشد.

ICM-20689 شامل ADC  16 بیتی روی تراشه، فیلترهای دیجیتال قابل برنامه ریزی، سنسور دمای نهفته، وقفه های قابل برنامه ریزی است و از طریق پورت های ارتباطی I2C و SPI پرسرعت با فرکانس 8 مگاهرتز میتوان با این سنسور ارتباط برقرار کرد.

از دیگر ویژگی‌های این سنسور میتوان به وجود یک ژیروسکوپ قابل برنامه ریزی با FSR    ±250dps، ±500dps ، ±1000dps  و±2000dps و یک شتاب سنج قابل برنامه ریزی با FSR   ±2g، ±4g،  ±8g و  ±16g اشاره کرد.

همچنین بافر FIFO  4K_byte موجود در این سنسور، پردازنده را قادر میسازد تا داده‌ها را پشت سر هم بخواند.

این سنسور در کاربردهایی نظیر تلفن همراه و تبلت، هواپیماهای بدون سرنشین، کنترلرهای بازی‌های مبتنی بر حرکت، کنترل از راه دور سه بعدی برای DTVهای متصل به اینترنت و ست تاپ باکس، سنسورهای پوشیدنی برای سلامتی، تناسب اندام و ورزش قابل استفاده میباشد.

مشخصات فنی سنسور

  • • Number of Axis: 6-Axis
    • Output type: Digital-I2C or SPI
    • Accelerometer FSR: ±2, ±4, ±8, ±16(g)
    • Accelerometer Sensitivity SF: 16384, 2048 (LSB/g), 4096, 8192
    • Gyroscope FSR: ±250, ±500, ±1000, ±2000(dps)
    • Gyroscope Sensitivity SF: 131, 16.4 (LSB/dps), 32.8, 65.5
    • Acc. & Gyro ADC: 16 Bit

کاربردها

  • Mobile phones and tablets
  • Drones
  • Motion-based game controllers
  • 3D remote controls for Internet connected DTVs and
  • set top boxes, 3D mice
  • Wearable sensors for health, fitness and sports.

ماژول ژیروسکوپ و شتاب‌سنج Gebra ICM20689

  • با توجه به اینکه دسترسی به پایه‌های سنسور دشوار است، کاربران برای توسعه سخت‌افزاری و نرم‌افزاری این سنسور به یک برد ابتدایی (starter board) و درایور نیاز دارند. برای راحتی کاربران، GebraMS برد ماژول ژیروسکوپ و شتاب‌سنج Gebra ICM20689 را طراحی کرده است. کاربران می‌توانند به کمک این برد، به مهم‌ترین پایه‌های سنسور به‌راحتی دسترسی پیدا کنند.
  • کافی است برد ماژول ژیروسکوپ و شتاب‌سنج Gebra ICM20689 را روی برد (Breadboard) قرار دهید و سپس با یکی از بردهای Arduino، Raspberry Pi یا Discovery و با اعمال ولتاژ مناسب، آن را راه‌اندازی کنید.
  • ما به‌ویژه استفاده از Gebra STM32F303 را توصیه می‌کنیم؛ چرا که این برد دارای رگولاتور داخلی ۳.۳ ولت است و ترتیب پایه‌های آن با تمامی ماژول‌های Gebra هماهنگ است (استاندارد GEBRABUS)، بنابراین می‌توانید برد ماژول ژیروسکوپ و شتاب‌سنج Gebra ICM20689 را مستقیماً به سوکت مربوطه متصل کرده و بدون نیاز به سیم‌کشی، برنامه‌نویسی را آغاز کنید.

ویژگی‌های ماژولGebraBit ICM20689

  • User-selectable module power supply voltage between 1V8 and 3V3
  • User-selectable module I/O logic voltage between 1V8 and 3V3
  • User-selectable interface protocol (I2C or SPI)
  • User-selectable I2C address (AD0)
  • Access to all data pins of the sensor
  • On Board, ON/OFF LED indicator
  • Pin Compatible with GEBRABUS
  • It can be used as a daughter board of GebraBit MCU Modules
  • Featuring Castellated pad (Assembled as SMD Part)
  • Separatable screw parts to reduce the size of the board
  • Package: GebraBit small (36.29mm x 32.72mm)

پین های ماژول

پین های تغذیه

  • 3V3 : این پین می تواند با توجه به وضعیت Jumper Selector های VDDSEL و VDIOSEL ،تغذیه اصلی سنسور و سطح منطق(Logic Level) ارتباط دییجیتال(I2C یا SPI) سنسور را تامین کند.
  • 1V8 : این پین می تواند با توجه به وضعیت Jumper Selector های VDDSEL و VDIOSEL ،تغذیه اصلی سنسور و سطح منطق(Logic Level) ارتباط دییجیتال(I2C یا SPI) سنسور را تامین کند.
  • GND : این پین زمین مشترک برای تغذیه و سطح منطق(Logic Level) سنسور می باشد.

پین های I2C

با استفاده از Jumper Selector های تعبیه شده روی برد می توان نوع ارتباط با ماژول را انتخاب کرد.در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت چپ باشد،پروتکل I2C اتنخاب شده است.وضعیت جامپر AD0 SEL آدرس I2C سنسور ( 0x68 یا 0x69 ) را مشخص می کند.

  • SDA : این پین، پین دیتای ارتباط I2C می باشد، که به پین دیتای متناظر در میکروکنترلر(پردازنده) ، متصل می شود.با توجه به وضعیت جامپر VDIOSEL ،می توانید از سطح منطق(Logic Level) با ولتاژ 1V8 یا 3V3  استفاده کنید.این پین با یک مقاومت 10K پول آپ (Pull Up) شده است.
  • SCL : این پین، پین کلاک ارتباط I2C می باشد، که به پین کلاک متناظر در میکروکنترلر(پردازنده) ، متصل می شود.با توجه به وضعیت جامپر VDIOSEL ،می توانید از سطح منطق(Logic Level) با ولتاژ 1V8 یا 3V3 استفاده کنید.این پین با یک مقاومت 10K پول آپ (Pull Up) شده است.

پین های SPI

با استفاده از Jumper Selector های تعبیه شده روی برد می توان نوع ارتباط با ماژول را انتخاب کرد.در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت راست باشد،پروتکل SPI اتنخاب شده است.وضعیت جامپر AD0 SEL در این حالت بی تاثیر است.

  • SDI(MOSI) : از این پین، برای ارسال دیتا از میکروکنترلر(پردازنده) به ماژول(سنسور) استفاده میشود.نام اختصاری این پین برگرفته از عبارت لاتین Serial Data In / Microcontroller Out Sensor In می باشد.
  • SDO(MISO) : از این پین، برای ارسال دیتا از ماژول(سنسور) به میکروکنترلر(پردازنده) استفاده میشود.نام اختصاری این پین برگرفته از عبارت لاتین Serial Data Out / Microcontroller In Sensor Out می باشد.
  • SCK : این پین، پین کلاک برای ارتباط SPI بوده که از نوع ورودی (Input) برای سنسور محسوب و به پین کلاک متناظر در میکروکنترلر(پردازنده) ، متصل می شود.
  • CS : این پین، پین Chip Select برای ارتباط SPI با ماژول(سنسور) می باشد، که با اعمال ولتاژ LOW (0V) ،ماژول(سنسور) برای ارتباط SPI انتخاب می شود.این پین از نوع ورودی (Input) برای سنسور محسوب می شود.

در صورتی که می خواهید از چندین ماژول GebraBit ICM20689به صورت همزمان استفاده کنید، کافیست پین های SDO , SDI , SCK همه انها و میکرکنترلر(پردازنده) را به هم متصل کرده و به CS هر کدام، یک پین منحصر به فرد اختصاص دهید.

دیگر پین ها

  • INT1 و INT2 : پین‌های Interrupt (وقفه) سنسور ICM20689 بوده که با توجه به دیتاشیت سنسور، کاربر می تواند شرایط وقوع وقفه،حالات و روش های وقوع وقفه و … را تنظیم کند.
  • FSY(FSYNC) : برای همگام سازی (Synchronization) سنسور با یک منبع خارجی ، از این پین استفاده میشود.برای اطلاعات بیشتر دیتاشیت سنسور مطالعه شود.به صورت پیش فرض این پین با مقاومت R3 به زمین متصل شده است.جهت استفاده از پین، مقاومت R3 باید از ماژول ، جدا (دمونتاژ) گردد.

معرفی بخش های ماژول

سنسور ICM20689

ای سی اصلی این ماژول بوده که در مرکز ماژول قرار گرفته و مدار ان طراحی شده است.

جامپرهای انتخاب پروتکل ارتباطی

در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت چپ باشد،پروتکل I2C اتنخاب شده است.

در صورتی که مقاومتهای 0R تمام Jumper Selector ها به سمت راست باشد،پروتکل SPI اتنخاب شده است.

به صورت پیش فرض نیز پروتکل I2C انتخاب شده است.

جامپرAD0 SEL

در صورت انتخاب پروتکل I2C  ،وضعیت جامپر AD0 SEL آدرس I2C سنسور  ( 0x68=>0, 0x69=>1) را مشخص می کند.

به صورت پیش فرض مقاومت 0R روی 0 قرار داشته و  آدرس  0x68  انتخاب شده است.

جامپرVDIO SEL

 با توجه به وضعیت مقاومت  0R این جامپر ، سطح منطق (Logic Level) ارتباط دیجیتال(I2C  یا SPI) سنسور از بین 1V8 و 3V3 انتخاب می شود.

به صورت پیش فرض سطح منطق (Logic Level) ارتباط دیجیتال(I2C  یا SPI) سنسور 3V3 انتخاب شده است.

جامپرVDD SEL

با توجه به وضعیت مقاومت  0R این جامپر ، ولتاژ اصلی تغذیه سنسور از بین 1V8 و 3V3 انتخاب میشود

به صورت پیش فرض ولتاژ اصلی تغذیه سنسور 3V3 انتخاب شده است.

تغذیه LED

با توجه به وضعیت جامپر VDD SEL و اعمال ولتاژ به ماژول توسط پین مربوطه، LED ماژول روشن می شود.

اتصال به پردازنده

اتصال I2C با GebraBit STM32F303

ابتدا اطمینان حاصل کنید که پروتکل I2C با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال I2C ماژول GebraBit ICM20689 به ماژول میکروکنترلرGebraBit STM32F303 بعد از تعریف کردن SDA و SCL رو پین های PB9 و PB8 (برای راحتی کار در STMCUBEMX)مراحل زیر را دنبال کنید:

  • پین 3V3 ماژول ICM20689 را به پین 3V3 خروجی ماژول میکروکنترلر متصل کنید.(سیم قرمز)
  • پین GND ماژول ICM20689 را به پین GND ماژول میکروکنترلر متصل کنید.(سیم سیاه)
  • پین SCL ماژول ICM20689 را به پین PB8 ماژول میکروکنترلر (SCL) متصل کنید.(سیم آبی)
  • پین SDA ماژول ICM20689 را به پین PB9 ماژول میکروکنترلر (SDA) متصل کنید.(سیم زرد)

توجه: با توجه به اینکه پین PA14 ماژول میکروکنترلرGebraBit STM32F303 برای پروگرام کردن میکروکنترلر استفاده میشود،تنظیم I2C بر روی پین های PA14 و PA15 در این ورژن مقدور نمی باشد،لذا در اتصال I2C به ماژول میکروکنترلرGebraBit STM32F303 در این ورژن ، ماژول GebraBit ICM20689 نمی تواند به صورت Pin to Pin بر روی آن قرار گیرد.برای راحتی کار می توانید پروتکل SPI را با استفاده از جامپر های روی برد انتخاب کرده و سپس ماژول GebraBit ICM20689 را به صورت Pin to Pin بر روی ماژول GebraBit STM32F303 قرار دهید.

اتصال SPI با GebraBit STM32F303

ابتدا اطمینان حاصل کنید که پروتکل SPI با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال SPI ماژول GebraBit ICM20689 به ماژول میکروکنترلرGebraBit STM32F303 بعد از تعریف کردن SDI و SDO و SCK و CS رو پین های PB5 و PB4 و PB3 و PC13 (برای راحتی کار در STMCUBEMX) ماژول GebraBit ICM20689 را به صورت Pin to Pin به راحتی بر روی ماژول GebraBit STM32F303 قرار دهید.

اتصال SPI یا I2C با GebraBit ATMEGA32A

با توجه به اینکه پین های SPI و I2C میکروکنترلر ATMEGA32A بر اساس استاندارد GEBRABUS متناظر با پین های SPI و I2C  دیگر ماژول های GEBRABIT می باشد،  ماژول GebraBit ICM20689 را به صورت Pin to Pin به راحتی بر روی ماژول GebraBit ATMEGA32A قرار داده و با تغییر وضعیت مقاومت های جامپر انتخاب پروتکل، با ماژول GebraBit ICM20689  از طریق SPI یا I2C ارتباط برقرار کنید.

I2C Connection

SPI Connection

توجه: در صورت استفاده از ماژول‌های میکروکنترلری GebraBit توجه داشته باشید که جامپر سلکتورهای تغذیه ماژول GebraBit  ICM20689 روی 3V3 باشد تا راحت تر بتوانید ولتاژ3V3 را از ماژول میکروکنترلری گرفته و ماژول را فعال کنید.

اتصال I2C با ARDUINO UNO

ابتدا اطمینان حاصل کنید که پروتکل I2C با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال I2C ماژول GebraBit ICM20689 به ARDUINO UNO مراحل زیر را دنبال کنید:

  • پین 3V3 ماژول ICM20689 را به پین 3V3 خروجی برد ARDUINO UNO متصل کنید.(سیم قرمز)
  • پین GND ماژول ICM20689 را به پین GND برد ARDUINO UNO متصل کنید.(سیم سیاه)
  • پین SCL ماژول ICM20689 را به پین A5 برد ARDUINO UNOمتصل کنید.(سیم آبی)
  • پین SDA ماژول ICM20689 را به پین A4 برد ARDUINO UNOمتصل کنید.(سیم نارنجی)

اتصال SPI با ARDUINO UNO

ابتدا اطمینان حاصل کنید که پروتکل SPI با استفاده از جامپر های روی برد انتخاب شده است، سپس برای اتصال SPI ماژول GebraBit ICM20689 به ARDUINO UNO مراحل زیر را دنبال کنید:

  • پین 3V3 ماژول ICM20689 را به پین 3V3 خروجی برد ARDUINO UNO متصل کنید.(سیم قرمز)
  • پین GND ماژول ICM20689 را به پین GND برد ARDUINO UNO متصل کنید.(سیم سیاه)
  • پین SDI ماژول ICM20689 را به پین D11 برد ARDUINO UNOمتصل کنید.(سیم زرد)
  • پین SDO ماژول ICM20689 را به پین D12 برد ARDUINO UNOمتصل کنید.(سیم بنفش)
  • پین SCK ماژول ICM20689 را به پین D13 برد ARDUINO UNOمتصل کنید.(سیم نارنجی)
  • پین CS ماژول ICM20689 را به پین D10 برد ARDUINO UNOمتصل کنید.(سیم آبی)
نوع ماژول

ماژول ژیروسکوپ و شتاب‌سنج

تعداد محور

6

ولتاژ تغذیه

1V8, 3V3

جریان مصرفی

10 mA to 30 mA (Typ. 20 mA)

نوع خروجی

I2C, SPI, Digital

ژیروسکوپFSR

±250, ±500, ±1000, ±2000(dps)

حساسیت ژیروسکوپ

131, 16.4 (LSB/dps), 32.8, 65.5

شتاب‌سنج FSR

±2, ±4, ±8, ±16(g)

حساسیت شتاب‌سنج

16384, 2048 (LSB/g), 4096, 8192

رزولوشن ADC

16 Bit

ابعاد

Gebra small(36.29mm x 32.72mm)

دمای کاری

-40 to +85 °C

هدف ما از انجام این پروژه چیست؟

در این بخش قصد داریم سنسور ICM20689 را به وسیله میکروکنترلر آرم، سری STM32F راه اندازی کنیم. به منظور استفاده راحت تر و بهینه تر در این پروژه از دو ماژول آماده GB306IM و GebraBit STM32F303 استفاده میکنیم.

این دو ماژول شامل مینیمم قطعات لازم سنسور ICM20689و میکروکنترلر STM32F میباشند که توسط تیم جبرابیت جهت آسان سازی کار فراهم شده اند.

در این آموزش چه چیزهایی یاد میگیریم؟

شما در این بخش ضمن راه اندازی و استفاده از سنسورICM20689  ، به طور خلاصه با تمامی رجیسترهای سنسور ICM20689، نحوه تنظیم بخش های مختلف میکروکنترلر STM32 برای راه اندازی این سنسور با استفاده از پروتکل SPI، چگونگی استفاده از فایل کتابخانه و درایور مختص ماژول GB6306IM، نحوه فراخوانی توابع و در نهایت دریافت داده های سنسور در کامپایلر Keil  نیز آشنا خواهید شد.

برای شروع این پروژه به چه چیزهایی نیاز داریم؟

برای اجرای این پروژه به سخت‌افزار و نرم‌افزار نیاز داریم. عناوین این سخت‌افزارها و نرم‌افزارها در جدول زیر به شما ارائه شده است و می‌توانید با کلیک بر روی هر یک، آن را تهیه/دانلود کرده و برای شروع آماده شوید.

سخت افزارهای مورد نیازنرمافزارهای مورد نیاز
ST-LINK/V2 ProgrammerKeil uVision Programmer
STM32 Microcontroller – ( Gebra STM32f303 )STM32CubeMX Program
ماژول ژیروسکوپ و شتاب‌سنج Gebra ICM20689
Cable and Breadboard

برای انجام این کار، ابتدا  باید پروتکل ارتباطی SPI را با استفاده از جامپرهای روی برد انتخاب کنیم. سپس ماژول GebraBit ICM20689 را به صورت pin to pin روی ماژول GebraBit STM32F303 همانطور که در تصویر زیر نشان داده شده است قرار می دهیم:

توجه: لطفاً توجه داشته باشید که تصویر بالا فقط برای نشان دادن نحوه قرارگیری ماژول GebraBit ICM20689 به صورت Pin to Pinروی ماژول GebraBit STM32F303 است. بنابراین، برای استفاده از پروتکل ارتباطی SPI، جامپرهای مربوط به پرتکل ارتباطی باید روی حالت SPI قرار گیرند.

در نهایت، در پنجره «Watch 1» کامپایلر Keil در حالت « Debug Session »، می‌توانید مقادیر دما، شتاب و سرعت زاویه‌ای را در امتداد سه محور «X، Y، Z» در زمان واقعی مشاهده کنید.

تنظیمات STM32CubeMX

در ادامه تنظیمات مربوط به هریک از بخش های SPI , RCC , Debug , Clock را در میکروکنترلر STM32F303 برای راه اندازی ماژول GebraBit ICM20689 را بررسی خواهیم کرد.

RCC / Clock تنظیمات

به‌دلیل وجود کریستال خارجی (External Crystal) در برد جبرابیت STM32F303، در بخش “RCC” گزینه “Crystal/Ceramic Resonator” را انتخاب می‌کنیم.

سپس از صفحه Clock Configuration حالت PLLCLK را انتخاب کرده و سایر تنظیمات لازم را انجام می‌دهیم (برای اطلاعات بیشتر کلیک کنید).

Debug & Programming تنظیمات

برای کاهش تعداد پایه‌ها در زمان Debug and Program، در این ماژول گزینه “Serial Wire” را از بخش “Debug” در بلوک “SYS” انتخاب می‌کنیم که مربوط به پایه‌های “SWCLK” و “SWDIO” است.

تنظیمات SPI

برای ارتباط از طریق SPI با ماژول GebraBit STM32F303 حالت Full Duplex Master را انتخاب کرده و پین های PB3 و PB4 و PB5 را به عنوان SCK و MISO و MOSI و پین PC13 را CS انتخاب می کنیم :

با توجه به دیتاشیت سنسور ، تنظیمات پارامتر های SPI  در بخش Parameter Settings همانند تصویر بالا مقدار دهی خواهد شد.

Project Manager تنظیمات

تنظیمات “Project Manager” به صورت زیر است؛ در اینجا از نسخه “5.32” محیط توسعه “MDK-ARM” استفاده کرده‌ایم. اگر شما برای برنامه‌نویسی از محیط توسعه دیگری استفاده می‌کنید، باید از قسمت Toolchain گزینه مربوط به IDE مورد استفاده خود را انتخاب کنید.

پس از تکمیل تمامی تنظیمات بالا، روی گزینه GENERATE CODE کلیک می‌کنیم.

کتابخانه پروژه (Library)

جبرابیت علاوه بر طراحی ماژولار انواع حسگرها و قطعات مجتمع، برای سهولت در نصب و توسعه نرم‌افزار توسط کاربران، مجموعه‌ای از کتابخانه‌های ساختاریافته و مستقل از سخت‌افزار را به زبان C ارائه می‌دهد. در این راستا، کاربران می‌توانند کتابخانه‌ی مربوط به ماژول مورد نظر خود را در قالب فایل‌های “.h” و “.c” دانلود کنند.

با افزودن کتابخانه‌ی ارائه‌شده توسط جبرابیت به پروژه (راهنمای افزودن فایل به پروژه)، می‌توانیم به‌راحتی کد خود را توسعه دهیم. فایل‌های مربوطه را می‌توانید در انتهای پروژه یا در بخش صفحات مرتبط در سمت راست مشاهده کنید.

تمام توابع تعریف‌شده در کتابخانه با جزئیات کامل توضیح داده شده‌اند و کلیه پارامترهای ورودی و مقادیر بازگشتی هر تابع به‌صورت مختصر شرح داده شده است. از آنجا که این کتابخانه‌ها مستقل از سخت‌افزار هستند، کاربر می‌تواند آن‌ها را به‌سادگی به کامپایلر دلخواه خود اضافه کرده و با میکروکنترلر یا برد توسعه مورد نظر خود استفاده کند.

فایل هدر GebraBit_ICM20689.h

در این فایل بر اساس دیتاشیت سنسور یا ای سی ، تمامی آدرس رجیسترها، مقادیر هریک از رجیسترها به صورت Enumeration تعریف شده است.همچنین بدنه سنسور ICM20689 و کانفیگ های مربوط به هریک از بلوک های داخلی سنسور  ICM20689 به صورت STRUCT  با نام  GebraBit_ICM20689 نیز تعریف شده است.که نهایتا در محیط  Debug Session تمامی کانفیگ های مربوط به هر بلوک به صورت Real Time قابل مشاهده است.

فایل سورس GebraBit_ICM20689.c

در این فایل که به زبان C نوشته شده ، تمامی توابع با جزئیات کامل، کامنت گذاری شده و تمامی پارامتر های دریافتی در آرگومان توابع و مقادیر بازگشتی از آنها ، بطور واضح توضیح داده شده است.از این رو در این قسمت به همین توضیحات اکتفا کرده و کاربران را برای اطلاعات بیشتر به بررسی مستقیم از این فایل دعوت می کنیم.

برنامه نمونه در Keil

بعد از تولید پروژه Keil با استفاده از STM32CubeMX و اضافه کردن کتابخانه GebraBit_ICM20689.c ارائه شده توسط GebraBit ، به بررسی قسمت اصلی برنامه آموزشی نمونه، فایل main.c و مشاهده خروجی ماژول GebraBit ICM20689 در قسمت watch در محیط Debugging برنامه Keil می پردازیم.

شرح فایل main.c

اگر به ابتدای فایل main.c دقت کنید،متوجه می شوید که هدر GebraBit_ICM20689.h برای دسترسی به ساختار ها ، Enum ها و توابع مورد نیاز ماژول GebraBit ICM20689 ، اضافه شده است.در قسمت بعدی متغیری به نام ICM20689_Module از نوع ساختار GebraBit_ICM20689 (این ساختار در هدر GebraBit_ICM20689 بوده و در بخش توضیحات کتابخانه GebraBit_ICM20689توضیح داده شد) که برای پیکربندی ماژول GebraBit ICM20689 می باشد،تعریف شده است:

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_ICM20689 ICM20689_Module;
/* USER CODE END PTD */

در بخش بعدی کد نوشته شده، پیکربندی و تنظیمات ماژول GebraBit ICM20689  با استفاده از توابع GB_ICM20689_initialize() و GB_ICM20689_Configuration()، انجام شود:

GB_ICM20689_initialize( &ICM20689_Module );
GB_ICM20689_Configuration(&ICM20689_Module ,FIFO_ENABLE);
//GB_ICM20689_Configuration(&ICM20689_Module , FIFO_DISABLE );

و در نهایت در قسمت while برنامه ، مقادیر ماژول GebraBit ICM20689 در 3 محور X , Y , Z  و دما به طور پیوسته دریافت میشود:

GB_ICM20689_Get_Data( &ICM20689_Module , FROM_FIFO );
//GB_ICM20689_Get_Data(  &ICM20689_Module , FROM_REGISTER  );

با خارج کردن توابع GB_ICM20689_Configuration(&ICM20689_Module , FIFO_DISABLE ); و GB_ICM20689_Get_Data(  &ICM20689_Module , FROM_REGISTER  ); می توان مقادیر داده ها را مستقیم از رجیستر های داده خواند.

STLINK V2

پس از ایجاد پروژه Keil با استفاده از STM32CubeMX و افزودن کتابخانه، آداپتور STLINKV2 را متصل کرده و برنامه‌نویس STLINK V2 را به برد جبرابیت STM32F303 وصل می‌کنیم.

وقتی برنامه‌نویس STLINK V2 را به برد جبرابیت STM32F303 متصل می‌کنید، نیازی به تغذیه جداگانه ماژول نیست، زیرا ولتاژ تغذیه را مستقیماً از برنامه‌نویس STLINK V2 دریافت می‌کند.

سپس روی گزینه Build (F7) کلیک کرده و پنجره Build Output را برای بررسی خطاهای احتمالی کنترل می‌کنیم.

در نهایت وارد حالت Debug شده و با اضافه کردن ICM20689_Module به پنجره  watch و اجرای برنامه ، تغییرات مقادیر دما و ماژول GebraBit ICM20689 را در 3 محور  X , Y , Z هم به صورت مستقیم از رجیستر های داده و هم FIFO مشاهده می کنیم.

دریافت داده های سنسور مستقیم از رجیستر های داده

دریافت داده های سنسور از FIFO

برای اطلاع دقیق از مقادیر کاری و حداکثر مقادیر مجاز آی‌سی‌ها، کاربران باید به دیتاشیت اصلی و رسمی آن قطعات مراجعه کنند

اگر هر یک از اسناد فنی ناقص یا اشتباه است، لطفاً به ما اطلاع دهید

با نظرات خود به تیم جبرا در بهبود کیفیت کمک کنید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

توجه!

محصولات ما صرفاً برای اهداف تحقیقاتی و توسعه طراحی شده‌اند. جبرابیت صراحتاً اعلام می‌کند که در صورت استفاده کاربران از این محصولات در کاربردهای حساس و دقیق از جمله امور مالی یا مواردی که به جان و مال انسان آسیب می‌زنند، هیچ‌گونه مسئولیتی را نمی‌پذیرد.

برای اطلاع دقیق از مقادیر کاری و حداکثر مقادیر مجاز آی‌سی‌ها (IC)، کاربران باید حتماً به دیتاشیت اصلی و رسمی آن قطعات مراجعه کنند.

سبد خرید
پیمایش به بالا